SEISMOTECTONICS
OF THE
CERRO PRIETO GEOTHERMAL AREA
on echelon offset by the Cerro Pristo and
Douglas B. Bausch
rossisnic survey, conducted in southwesternmost
ed with phase arrival times and first motion data
ent stations wild Thesis joint USCS-California
Submitted in Partial Fulfillment
of the Requirements for the Degree of
Master of Science in Geology
Northern Arizona University
December 1991
and 2.95, and location errors of less than two
Approved:
Daniel 5. Bermbrugh
- Paul Morr

ABSTRACT

SEISMOTECTONICS OF THE CERRO PRIETO GEOTHERMAL AREA DOUGLAS B. BAUSCH

The Cerro Prieto geothermal area lies within Mexico, approximately 25 km south of the California border, and between the en echelon offset of the Cerro Prieto and Imperial faults. Data obtained from a six-week eightstation microseismic survey, conducted in southwesternmost Arizona by the Arizona Earthquake Information Center (AEIC), were combined with phase arrival times and first motion data from permanent stations within the joint USGS-California Institute of Technology southern California Network and the Centro de Investigación Cientifica y de Educación Superior de Enseñada (CICESE) network. The resulting data allowed good locations for epicenters and some focal solutions for events occurring within the Cerro Prieto geothermal area.

During a one-month period beginning January 15 and ending February 15, 1988, 42 events with coda magnitudes between 0.9 and 2.95, and location errors of less than two kilometers occurred within the Cerro Prieto geothermal area. These epicenters follow a trend northward (N3°W ± 4°), connecting the Cerro Prieto and Imperial faults. Wellconstrained single-event focal solutions were produced from the first motions of fourteen events. Five of these solutions, obtained from events occurring within the production zone of the Cerro Prieto geothermal area, exhibited a combination of strike-slip motion on northwest and northeast-trending focal planes with normal motion on steeply dipping northward-trending focal planes. Solutions illustrating events which took place outside of the production zone were obtained from the first motions of nine events. These solutions demonstrate predominantly strikeslip motion on northwest and northeast trending focal planes with a small component of normal motion.

The seismicity of the Cerro Prieto area has previously been compared to the Brawley seismic zone, which connects the Imperial and San Andreas faults. Both seismic areas are defined by a pod-shaped distribution of epicenters elongated in a north-south orientation. This distribution of epicenters, as well as the focal solution data, suggests a model of "leaky" transform faulting. The leaky transform model, first proposed by Hill (1977), suggests northwardtrending dike emplacement at lower crustal levels, and that these dikes are interconnected by strike-slip faulting.

TABLE	OF	CONTENTS	

List of Tables	vi
List of Figures	ii
Chapter 1: Introduction	1
	1
Parional Mastenia Setting	Ā
Mbe Can Andreas Culf of California System	A
The San Andreas-Guil of California System	9
The Salton Trough	2
Chapter 2: Methods	21
Data Collection	21
CIT Catalog	21
Incorporation of Permanent Station Data	21
AEIC Microearthquake Survey Network	24
Data Analysis	27
HYPO71PC	27
HYPO71PC	27
	20
HYPO71PC Output	20
Magnitude Determination	
Chapter 3: Seismicity of the Cerro Prieto	
Geothermal Area	32
Geothermal Area	32
Crustal Velocity Models	32
Crustal Velocity Models	34
	41
Previous Surveys	13
Majer and Others, 1978 Survey	40
Majer and McEvilly, 1980 Survey	43
wong and Frez, 1980	
Victoria Aftershock Survey	44
Permanent Station Data	46
Joint USGS/CIT Southern California	
Seismic Network	46
CICESE Northern Baja California Network	46
	51
Hypocenter Distribution	
Hypocenter Distribution	51
Hypocenter Distribution	51
Hypocenter Distribution	51
Hypocenter Distribution	51 54
Hypocenter Distribution	51 54 57
Hypocenter Distribution	51 54 57 57

Cerro Prieto	59
Regional Comparison	
Plate Tectonic Model	70
Leaky Transform Concept	70
Spreading Center Migration	70
Chapter 5: The Potential for Passive Seismic Methods	
in the Exploration and Study of the	
Cerro Prieto Geothermal Area	
Hypocenter Data	11
	11
Cerro Prieto Study	
b-Values	03
Cerro Prieto Study	04
Previous Studies	00
Cerro Prieto Study	90
Drawious Chudies	
Previous Studies	
Mapping Passive Seismic Parameters	95
Mapping rassive seismic ratameters	55
Chapter 6: Discussion and Findings	99
Discussion	99
Salton Trough	99
Cerro Prieto Geothermal Area	99
Findings	101
	101
Focal Solutions	101
Focal Solutions	103
Seignic Stations Within and Outside	
References	L04
Appendix A: HYPO71PC Output	112
Appendix B: Single-Event Focal Mechanisms	146
Biographical Statement	161

LIST OF TABLES

Field Equipment and Settings for the 1988 Microseismic Survey			25
HYPO71PC Grading Scale (Lee and Lahr, 1975)	•	•	29
Quality of First Motions-Grading Scale	•	•	29
			33
RMS Values for Five Velocity Models \ldots	•	•	35
Station Locations and Corrections	•	•	37
RMS Values for the Two Best Fitting Velocity Models After Applying Station Corrections	•	•	39
Vp/Vs and Poisson's Ratios Measured at Seismic Stations Within and Outside			
of the Geothermal Source Area	•	•	91
Direct P-Wave Velocities Measured at Seismic Stations Within and Outside of the Geothermal Source Area			96
	Microseismic Survey	<pre>Microseismic Survey</pre>	<pre>Microseismic Survey</pre>

LIST OF FIGURES

	trenduction pana
1.	Relative Plate Motions Along the Boundary of the Pacific and North American Plates
2.	Sketch of Plate Cross Sections During the Ridge and Trench Collision 6
3.	Reconstruction of Plate Evolution and Deformation Related to Late Cenozoic Interactions of the North American and Pacific Plates
4.	Structure and Tectonics of the Imperial Valley Region
5.	Idealized Relationship Between Strike-Slip Faulting and Spreading Centers
6.	Plate-Tectonic Model and Map of Northern Gulf of California and Salton Trough
7.	Idealized Model Adapted for Extension of the Salton Trough
8.	Locations of Seismic Stations Used in This Study
9.	Two Best Fitting Crustal Velocity Models 36
10.	A Comparison of RMS Values Calculated by HYPO71PC for the Final Two Best Fitting Velocity Models
11.	Copies of Field Seismograms Representing an Imperial Valley Event Recorded on AEIC Station MEX, and a Cerro Prieto Event Recorded on
	AEIC Station BOM
12.	Epicenters of Production Area Earthquakes from a Seventeen Day, 1980 Survey, Conducted by Majer
27.	and McEvilly
13.	Distance-Depth Relationship for Aftershocks of the 1980 Magnitude 6.7 Victoria Earthquake 47

14.	A and B Quality Epicenters of Earthquakes Occurring from 1969 to 1988 in the Cerro Prieto Region Between the Offsets of the Imperial and Cerro Prieto faults			. 48
15	Network of Seismic Stations and Epicenters from			
15.	June, 1977 through May, 1978			. 50
16.	Epicenters of Earthquakes Located by a Temporary Southwesternmost Arizona Network Combined with Data from Permanent Networks in Northern Baja			
	California and Southern California			. 52
17.	Close-up of Earthquake Epicenters Recorded During Temporary Survey			. 53
18.	Cross-Section of Activity Recorded by the Temporary Network			. 55
19.	Survey Locations from January 15 through February 15, 1988, and Major Transform Faults .			. 61
20.	A Close-up of Production Zone Epicenters			
34.	and Focal Solutions	t	•	. 62
21.	P and T Axes of Single-Event Focal Solutions Obtained During This Survey	IC .	•	. 64
22.	Locations of Earthquake Swarms Which Produced the Composite Focal Solutions of Albores and others (1978)		•	. 66
23.	Composite Solutions Representing Strike-Slip			
37.	Motion Associated with the Transform Faults, and Normal Solutions Between the Transforms			. 67
24.	Map of the Central Part of Imperial Valley,			
39,	California, Showing Focal Solutions and the State-of-Stress Orientation			. 71
40.				
25.	Schematic Representation of Dikes and Conjugate Faulting in the "Leaky" Transform Model of Hill (1977)			. 72
42.	Focal mechanism for event number 20			
26.	Isopleth Map from Gastil and Bertine (1986) Showing Concentrations of Earthquake Epicenters 1900-1974			. 78
27.	Concentrations of Thermal Springs and Wells from	n		
45	Gastil and Bertine (1986)			. 79

28.	Cerro	nters of Ea Prieto Pro	oduct	tion A:	rea Dur:	ing				tł	ne				~~~
	Tempo	rary Survey	Y •				•	•	•	•	•	•	•	•	82
29.	Surve to Th	-Values Ca y within th ose Occurr ction Zone	ne Pi ing (roduct. Outside	ion Zone e of the	e as									85
30.	Wadat	i Diagram 1	Produ	uced f	rom a S	inal		sha			J 1	Eve	ont		
50.		ring within													88
31.		i Diagram : 1977 throu													89
32.		i Diagram 1						cui	ri	ing	J				
		n the Produ Survey			CALL CALLS IN CALLS IN CALLS	-									93
22	Wadat	i Diagnam I	Danada	and f	nom Error		2								
33.		i Diagram 1 de the Proc						cur		LUC	3				
	1988	Survey .	• • •				•	•	•	•	•	•	•	•	94
34.	Region	omparing An n of Eartho on's Ratios ities Which	quake s that	es Proc an Regi	ducing (ional Va	Great	ter	7 2	/p/	/Vs	5 8	and	1		
		nal Values									•				97
35.	Focal	mechanism	for	event	number	2.								1	47
36.	Focal	mechanism	for	event	number	6.		•						1	48
37.	Focal	mechanism	for	event	number	8.								1	49
38.	Focal	mechanism	for	event	number	11				•				1	50
39.	Focal	mechanism	for	event	number	13								1	51
40.	Focal	mechanism	for	event	number	14								1	52
41.	Focal	mechanism	for	event	number	18						•		1	53
42.	Focal	mechanism	for	event	number	20								1	54
43.	Focal	mechanism	for	event	number	21		•	•					1	55
44.	Focal	mechanism	for	event	number	30		•	•			•		1	56
45.	Focal	mechanism	for	event	number	34	•				•	•	•	1	57
46.	Focal	mechanism	for	event	number	36								1	58

47.	Focal	mechanism	for	event	number	40	•	•	•	•	•	•	•	159
48.	Focal	mechanism	for	event	number	43	•	•	•	•	•	•	•	160

A complete text version is located at NAU's Cline Library