SEISMICITY AND SEISMOTECTONICS OF THE VERDE VALLEY AND TRANSITION ZONE OF CENTRAL ARIZONA

Paul Ernest Sanchez

A 46 day microserthquake stu by during the Spring of 1987 vectored

widay for the Chino and "A Thesis of area. Clostered along the

Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Geology

Northern Arizona University

May 1990 market of the second of the

ay be related to crustal reactor Approved: desitive or attenuation

am

ABSTRACT

SEISMICITY AND SEISMOTECTONICS OF THE VERDE VALLEY AND TRANSITION ZONE OF CENTRAL ARIZONA

PAUL ERNEST SANCHEZ

A 46 day microearthquake study during the Spring of 1987 recorded 13 local earthquakes in the Verde Valley of Central Arizona. Data synthesized from studies at this southern end of the Northern Arizona Seismic Belt (NASB) support a microearthquake activity rate of .22 to .30 events/day for the Chino and Verde Valley area. Clustered along the neotectonic northern segment of the Verde Fault system, ninety percent of the microearthquakes recorded in the Verde Valley occurred in the upper 10 km of crust.

Compared to the northern NASB, this part of the physiographic Transition Zone (TZ) exhibits relatively larger background microseismicity in the range .70 \leq M_D \leq 1.4. Approximately 70 percent of the microseismicity in the northern NASB consists of ultra-microseismicity (-1.0 \leq M_D \leq .70). Precluding detection threshold of the seismic instrumentation as a cause, the absence of ultra-microseismicity in the TZ may be related to crustal rheology, joint density, or attenuation characteristics of the crust. The frequency of moderate-sized microearthquakes in the northern NASB and southern NASB, specifically those with magnitudes represented through .70 \leq M_D \leq 1.4 and 1.9 \leq M_D \leq 2.3, appear to be comparable. The larger of these two magnitude ranges measures .05 events/day in the Kaibab Plateau and Verde Valley area, whereas the smaller magnitude range is scaled between .40 and .22 events/day, respectively. A cumulative analysis of microearthquake activity rates and magnitudes from central and northwest Arizona suggest that the northern and southern NASB may, within an order of magnitude, relieve equivalent, constant levels of crustal strain through background microseismicity.

The study finds that a steep Bouguer anomaly gravity gradient following the NASB becomes obscure in the Verde Valley area, suggesting that the decrease in recurrence of larger magnitude earthquakes ($M_D \ge 3.0$) may be associated with the termination of the cause of the anomaly. The lack of ultra-microseismicity and the lower level of large magnitude earthquake activity may signal the initiation of a separate seismotectonic domain, one related solely to deviatoric stresses induced from isostatic disequilibrium along the southern boundary of the Colorado Plateau.

TAR	IF	OF	CONT	FN.	IS
IAD	LL	UI.	CON		10

	TABLE OF CONTENTS
	belt: An Analysis of Setematectoric Benetic plesvii
List of Fig	guresix
Chapter 1:	Introduction
Purpos	se and Scope
Region	nal Geologic Setting
Ph	ysiographic Transition Zone6
Ge	ology of the Verde Valley6
La	te Cenozoic Faulting of the Verde Valley
Gr	avity Modeling of the Verde Valley
Regio	nal Seismicity
No	rthwestern Arizona
Ce	ntral and Southeastern Arizona
H1	storical Seismicity of Arizona16 evious Microearthquake Studies20
Pr	evious microearinquake studies
Chanter 2.	Microearthquake Study of the Verde Valley25
Notwo	rk Parameters and Methods25
lo	cation Program
As	sessment of Magnitude
F1	evation Correction
Obser	vations
As	sessment of Location Quality and Error
Se	lection of Crustal Model45
Chapter 3:	Analysis of Microearthquake Data from the Verde Valley48
local	Farthquake Distribution48
Corre	lation of Hypocentral Depths
Sh	allow Hypocentral Activity
De	ep Hypocentral Activity
Sourc	e Dimensions and Energy Release
Chapter 4:	Seismicity of the Transition Zone
Synth	esis of Microearthquake Data: The NASB and the
Synch	Transition Zone
HV	vnocentral Depth
Ba	ckground Microearthquake Magnitudes
Ba	ckground Microearthquake Activity Rates
Te	emporal Fluctuations in Seismicity
Spat	ial Association of Seismicity and Comparison of
	Regional Earthquake Recurrence
Hi	storical Earthquake Activity

Microseismicity
Regional Earthquake Recurrence curves
Chapter 5: Comparison of Seismicity to Tectonic Setting in Arizona.77 Regional Tectonic Setting
The Relationship Between the NASB and ASB
Chapter 6: Conclusions
References Cited
Appendix I: Station Locations: The 1987 Verde Valley Seismic Investigation103
Appendix II: Basic-Hypo Location Solutions105
Biographical Information108

LIST OF TABLES

Table	Pa	ge
1.	Selected regional geophysical characteristics emphasizing the range of values across the tectonic transition zone of the Colorado Plateau	3
2.	Large magnitude earthquakes in the Northern Arizona Seismic Belt (NASB)	18
3.	Large magnitude earthquakes in the Transition Zone	18
4.	Compilation of representative seismic characteristics from the Intermountain Seismic Belt and the Northern Arizona Seismic Belt	23
5.	Examples of computer solutions and earthquake location quality from Mendoza and Morgan (1985)	30
6.	A summary of events and data on microearthquakes detected during the Spring 1987 Verde Valley seismic investigation	33
7.	Empirical determination of earthquake location quality determined from quarry blast locations	39
8.	Alternative determination of earthquake location error	41
9.	Selected examples of accurately located events from table 6	43
10.	Selected examples of poorly located events from table 6	44
11.	List of proposed crustal models for central and northern Arizona	46
12.	Analysis of fault plane rupture areas	57
13.	A summary of Transition Zone earthquake data used in this report through 1987	62
14.	Microearthquakes and duration magnitudes from the 1979 Chino Valley survey by Eberhart-Phillips (1980)	64

15.	A summary showing the contrasting background magnitudes from the Kaibab Plateau and the Chino Valley and Verde Valley area	93
16.	Station Locations: The 1987 Verde Valley Seismic Investigation	104
17.	Basic-Hypo Location Solutions	106

	LIST OF FIGURES	
Figur		Page
1.	General delineation of important boundaries surrounding the Colorado Plateau	. 2
2.	The areal extent of the physiographic Transition Zone of Arizona and important geologic and physiographic features	. 7
3.	Major physiographic, geologic, and structural features of the northern end of the Verde Valley	. 8
4.	Distribution and ages of neotectonic faulting in northwest Arizona	. 10
5.	Suggested model for the shallow subsurface geometry of faulting within the Verde Valley	. 13
6.	Schematic representation of the seismotectonic domains surrounding the Colorado Plateau	. 15
7.	Historical epicenters in Arizona (pre-1980) having magnitudes greater than 3.0 or felt	. 17
8.	Distribution of instrumentally recorded and felt seismicity in the Chino Valley and Verde Valley area	. 21
9.	Photographs of selected microearthquake signatures recorded during the 1987 Verde Valley study (.69 $\leq M_D \leq 1.26$)	. 34
10.	A histogram showing the temporal distribution of microearthquake activity during the 1987 Verde Valley survey	. 36
11.	Photographs of selected microearthquake signatures recorded during the 1987 Verde Valley study (1.9 $\leq M_D \leq 2.1$)	. 37
12.	Epicentral plot of the Spring 1987 investigation of the Verde Valley	. 49
13.	Histogram of depth versus number of events	. 51

14.	Subsurface profile showing the distribution of local hypocenters along line A' - A from figure 12	53
15.	A plot of RMS versus fixed depths from several location trials used for event C	55
16.	Cumulative hypocentral depths for the Transition Zone and depth histograms from the Kaibab Plateau and San Francisco Volcanic Field	59
17.	Line graph showing the ranges of microearthquake magnitudes recorded during several seismic investigations in Arizona	63
18.	Histograms representing earthquake activity on the Kaibab Plateau	69
19.	Spatial association of epicentral locations with Quaternary Faults in the Chino Valley and Verde Valley area	71
20.	Recurrence curves for selected areas of the NASB and the Transition Zone	74
21.	Quaternary faulting, historic seismicity, and pattern of Bouguer gravity gradient along the tectonic boundary of the Colorado Plateau and southern Basin and Range	.78
22.	Quaternary faulting, historic seismicity, and the northwest trending positive free-air,gravity anomaly	87

A complete text version is located at <u>NAU's Cline Library</u>